Friday, June 05, 2020

Robot Accident Investigation

Yesterday I gave an talk at the ICRA 2020 workshop Against Robot Dystopias. The workshop should have been in Paris but - like most academic meetings during the lockdown - was held online. In the zoom chat window toward the end of the workshop many of us were wistfully imagining continued discussions in a Parisian bar over a few glasses of wine. Next year I hope. The workshop was excellent and all of the talks should be online soon.

My talk was an extended version of last year's talk for AI@Oxford What could possibly go wrong. With results from our new paper Robot Accident Investigation, the talk outlines a fictional investigation of a fictional robot accident. We had hoped to stage the mock accident, in the lab, with human volunteers and report a real investigation (of a mock accident) but the lockdown put paid to that too. So we have had to use our imagination and construct - I hope plausibly - the process and findings of the accident investigation.

Here is the abstract of our paper.
Robot accidents are inevitable. Although rare, they have been happening since assembly-line robots were first introduced in the 1960s. But a new generation of social robots are now becoming commonplace. Often with sophisticated embedded artificial intelligence (AI) social robots might be deployed as care robots to assist elderly or disabled people to live independently. Smart robot toys offer a compelling interactive play experience for children and increasingly capable autonomous vehicles (AVs) the promise of hands-free personal transport and fully autonomous taxis. Unlike industrial robots which are deployed in safety cages, social robots are designed to operate in human environments and interact closely with humans; the likelihood of robot accidents is therefore much greater for social robots than industrial robots. This paper sets out a draft framework for social robot accident investigation; a framework which proposes both the technology and processes that would allow social robot accidents to be investigated with no less rigour than we expect of air or rail accident investigations. The paper also places accident investigation within the practice of responsible robotics, and makes the case that social robotics without accident investigation would be no less irresponsible than aviation without air accident investigation.
And the slides from yesterday's talk:




Special thanks to project colleagues and co-authors: Prof Marina Jirotka, Prof Carl Macrae, Dr Helena Webb, Dr Ulrik Lyngs and Katie Winkle.

Monday, April 20, 2020

Autonomous Robot Evolution: an update

It's been over a year since my last progress report from the Autonomous Robot Evolution (ARE) project, so an update on the ARE Robot Fabricator (RoboFab) is long overdue. There have been several significant advances. First is integration of each of the elements of RoboFab. Second is the design and implementation of an assembly fixture, and third significantly improved wiring. Here is a CAD drawing of the integrated RoboFab.

The ARE RoboFab has four major subsystems: up to three 3D printer(s), an organ bank, an assembly fixture and a centrally positioned robot arm (multi-axis manipulator). The purpose of each of these subsystems is outlined as follows:
  • The 3D printers are used to print the evolved robot’s skeleton, which might be a single part, or several. With more than one 3D printer we can speed up the process by 3D printing skeletons for several different evolved robots in parallel, or – for robots with multi-part skeletons – each part can be printed in parallel.
  • The organ bank contains a set of pre-fabricated organs, organised so that the robot arm can pick organs ready for placing within the part-built robot. For more on the organs see previous blog post(s).
  • The assembly fixture is designed to hold (and if necessary rotate) the robot’s core skeleton while organs are placed and wired up.
  • The robot arm is the engine of RoboFab. Fitted with special gripper the robot arm is responsible for assembling the complete robot.
And here is the Bristol RoboFab (there is a second identical RoboFab in York):


Note that the assembly fixture is mounted upside down at the top front of the RoboFab. This has the advantage that there is a reasonable volume of clear space for assembly of the robot under the fixture, which is reachable by the robot arm.

The fabrication and assembly sequence has six stages:
  1. RoboFab receives the required coordinates of the organs and one or more mesh file(s) of the shape of the skeleton.
  2. The skeleton is 3D printed.
  3. The robot arm fetches the core ‘brain’ organ from the organ bank and clips it into the skeleton on the print bed. This is a strong locking clip.
  4. The robot arm then lifts the core organ and skeleton assemblage off the print bed, and attaches it to the assembly fixture. The core organ has metal disks on its underside which are used to secure the assemblage to the fixture with electromagnets.
  5. The robot arm then picks and places the required organs from the organ bank, clipping them into place on the skeleton.
  6. Finally the robot arm wires each organ to the core organ, to complete the robot.



Here is a complete robot, fabricated, assembled and wired by the RoboFab. This evolved robot has a total of three organs: the core ‘brain’ organ, and two wheel organs.
Note especially the wires connecting the wheel organs to the core organ. My colleague Matt has come up with an ingenious design in which a coiled cable is contained within the organ. After the organs have been attached to the skeleton (stage 5), the robot arm in turn grabs each organ's jack plug and pulls the cable to plug into the core organ (stage 6). This design minimises the previously encountered problem of the robot gripper getting tangled in dangling loose wires during stage 6.

And here is a video clip of the complete process:



Credits

The work described here has been led by my brilliant colleague Matt Hale, very ably supported by York colleagues Edgar Buchanan and Mike Angus. The only credit I can take is that I came up with some of the ideas and co-wrote the bid that secured the EPSRC funding for the project.

References

For a much more detailed account of the RoboFab see this paper, which was presented at ALife 2019 last summer in Newcastle: The ARE Robot Fabricator: How to (Re)produce Robots that Can Evolve in the Real World.

Related blog posts

First automated robot assembly (February 2019)
Autonomous Robot Evolution: from cradle to grave (July 2018)
Autonomous Robot Evolution: first challenges (Oct 2018)